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Abstract. Thermophilic proteins have widely used in food, medicine,
tanning, and oil drilling. By analyzing the protein sequence, the superior
structure and properties of the protein sequence are obtained, which is
used to efficiently predict the protein species. In this paper, a voting
algorithm was designed independently. Protein features and dimensions
were extracted and reduced, respectively. Data was predicted by WEKA.
Next, the voting algorithm was applied to the data obtained by the
above processing. In this experiment, the highest accuracy rate of 93.03%
was achieved. This experiment has at least two advantages: First, the
voting algorithm was developed independently. Second, any optimization
method was not used for this experiment, which prevents over-fitting.
Therefore, voting is a very effective strategy for the thermal stability
of proteins. The prediction data set used in this paper can be freely
downloaded from http://lab.malab.cn/∼lijing/thermo data.html.
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1 Introduction

Since the extreme thermophilic microbe genome (the Methanococus jannaschii)
has been published, the method of comparing genomes (proteome) has been
widely used for the research of protein thermostability.

By mining the charged residues and hydrophobic residues, Bayesian rules,
logic functions, neural networks, support vector machines, decision trees are
used to distinguish between thermophilic proteins and non-thermophilic pro-
teins. For data of 4684 and 653 protein sequences, 85% and 91% were obtained
by neural network and 5-fold cross-validation [11]. By analyzing the distribution
of neighbouring amino acids, there are dramatic differences in thermophilic and
non-thermophilic proteins. A statistical method was designed for the detection of
dipeptide data. 86.3%, 85.5% and 89.7% were displayed, including comparative
experiments [30]. Structural information is applied to the logitboost classifiers by
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recognition of the first-class protein structure, and the principle of 5-fold cross-
validation is set. Experiments show that 97% and 86.6% accuracy are captured
separately. It is found that the logitboost classifier has strong generalization
capacity and low demanding on the length of the protein sequence [32]. Exper-
imental material is used in a variety of protein identification patterns, which
has high degree of confidence. Among these methods, the credibility of the back
propagation neural network is up to 98%. The experimental results show that the
accuracy of 75% and 85% of thermophilic and non-thermophilic protein, respec-
tively [31]. Potential models and sealed information were mined and found by
Chaos game representation (CGR). The pseudo-amino acid information was cal-
culated and extended into protein sequences, which were visualized by the CGR
model. Features were extracted via CGR section and 87.92% was captured [17].
Considering the problem of mutations caused by the growth or shortening of
protein sequences, this article claims that protein stability can be promoted
by Support Vector Machine (SVM). Test results show that the classification
accuracy rate reaches 88% [18]. In order to distinguish thermophilic proteins
from non-thermophilic proteins and to deal with the stability changes of protein
mutations, this paper invented a new type scoring function. Feature weights were
taken into account by rewriting the random forest classifier. In the end, 97.3%
accuracy was completed [13].

In this paper, a new voting program was developed. By extracting 13 features
and integrating 24 classifiers, the better integrated combination was selected
for voting, and relatively high accuracy was captured. The extracted features
were CKSAAGP, AAC, CKSAAP, CTPC, GAAC, GTPC, GDPC, CTDC, DDE,
DPC, CTDT, KSCTRIAD and TPC. Because there are too many classifiers, only
voting classifiers will be explained in the following sections. Next, the dimen-
sions of all features are cut, appropriately. WEKA was applied to preliminar-
ily predict, and the results of preliminary prediction were used in the voting
program. Ultimately, the accuracy of 93.62% and 92.8% was achieved, sepa-
rately. The experiment found that data without dimension reduction has better
performance.

Compared with published schemes to distinguish between thermophilic and
non-thermophilic proteins, the strengths of this study are obvious.

(1) The accuracy is higher.
The result of the vote was 93.03%

(2) The voting program was developed, independent.
Without engineering contribution to support theory, many published papers
merely describe a general method for identifying thermophilic and non-
thermophilic proteins in the field of bioinformatics. In contrast, this research
has corresponding engineering as the theoretical basis. In other words, pro-
fessional ability of the operator is less demanding. This is crucial for the
development bioinformatics [4].

(3) The data has not been optimized to prevent over-fitting.
Sometimes, in order to get better results, optimizer will be applied to the
experimental process in the field of data mining. Most of the time, data
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optimization does more disadvantages than advantages. Optimization will
cause many problems that cannot be ignored and the prediction effect of the
model is poor [33].

2 Material and Method

2.1 Data Sources

The data source is http://lab.malab.cn/∼lijing/thermo data.html, including 915
thermophilic proteins and 793 non-thermophilic proteins. The labels of the data
are positive and negative.

2.2 Feature Extraction

The features extracted are significant, which will largely affect the experimen-
tal results. The theoretical basis of the amino acids features extracted is that
location information and structural composition. In the key step, 13 features
were extracted, namely CKSAAGP, AAC, CKSAAP, CTPC, GAAC, GTPC,
GDPC, CTDC, DDE, DPC, CTDT, KSCTRIAD. Given the limited space, fea-
ture extraction algorithms will be overly generalized and will not delve into the
details.

The features of AAC algorithm are extracted based on the number of appear-
ance. 20 different amino acids were found, respectively [3]. The DDE algorithm
is based on the formation of dipeptides. After a series of reversals, the ideal mean
and the ideal variance are calculated, which are used to obtain the final indica-
tor [12]. The design theory of the CKSAAGP algorithm is the frequentness of
amino acid, and the homologous eigenvalues are captured by reasoning [7]. The
number of protein species is a major consideration in the TPC algorithm [9].
Due to space constraints, only feature descriptors for voting are introduced.

2.3 Max Relevance Max Distance (MRMD)

After feature extracted, the MRMD [42] is used for feature selection. Cutting
the less relevant features is the primary task of MRMD [25].

2.4 Classifier Selection and Tools

In the preliminary classification of amino acids, WEKA is the main operating
environment for data before and after feature selection, which is fast and effi-
cient [20]. Besides, a large number of classifiers are built into WEKA, and 24
classifiers are screened out. The classifier for voting is discribed in the following
content.

LIBSVM is widely used in machine learning and data mining, whose software
packages can be used across platforms [22,24]. The goal of Simple Logistic clas-
sifier is to achieve the fitting regression effect through Logistic Boost. Through
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multiple iterations, the models are updated constantly. When the deviation value
of the logistic regression model reduces, the update ends [23]. The random com-
mittee classifier is an extension of the random tree classifier, which is mostly
used for the formation of low-level classifiers for different data sources [39].
The classification rule of the Logistic classifier is a function, which is derived
from the maximum likelihood function, the activation function and the gradi-
ent descent algorithm [16]. The principle of PART is the matching of data and
“decision lists”. When the match reports an error [10], the default category will
be called [15].

3 Experiment

In order to confirm the effectiveness of the voting algorithm, other experiments
were compared. In Experiment 1, 188D was used for feature extraction of raw
data (188D means 188 features were extracted from raw data, which includes
11 extraction principles of amino acid content, hydrophilicity, van der Waals
force and polarity, etc.). In Experiment 2, the features were extracted utilizing
IFEATURE [5] algorithm, and the WEKA and voting algorithms were used
in subsequent experimental procedures. In Experiment 3, MRMD was used to
select the extracted features to retain necessary features. WEKA and voting
procedures were used to expect better experimental results.

3.1 Performance of Evaluation Standards

SN = TP/(TP + FN) (1)

SP = TN/(TN + FN) (2)

ACC = (TP + TN)/(TP + TN + FP + FN) (3)

3.2 Performance of Experiments

Experiment 1. The raw data includes 915 thermophilic proteins and 793 non-
thermophilic proteins. The 188D was used for feature extraction of raw data.
After a series of conversions, the data results were processed into the ARFF
format, which was run on WEKA (cross-validation was set to 10-fold, and 8
classifiers were selected, namely Bayesian network, Naive Bayes, Decision tree
J4.8, Bagging meta learning, Logistic function, Multiclass classifier, Classifica-
tion via Regression and random forest). Experiment l finds that the multi-class
classifier and Logistic function classifier have the highest accuracy. The details
are demonstrated in Table 1.
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Table 1. The different classifiers performance of 188D.

Methods AAC

Bays Net 82.50%

Random Forest 88.64%

Decision tree J4.8 81.85%

Bagging meta learning 88.06%

Logistic function 88.93%

Multiclass classifier 88.93%

Classification via Regression 86.71%

Näıve Bayes 83.43%

Data of Experiment 2. Affected by the design principle of IFEATURE,
13 features were extracted from 1708 protein sequences, which are AAC,
CKSAAGP, CKSAAP, GTPC, GDPC, CTDC, DDE, DPC, CTDT, KSTRIAD,
TPC, GAAC, and CTDD. Besides, many classifiers were tested on WEKA, and
only Random Forest results were shown in the Table 2. The highest accuracy
rate is 90.57%.

Table 2. The different features accuracy of RF.

Feature Dimension ACC

AAC 20 90.57%

CKSAAGP 150 79.22%

CKSAAP 2400 88.23%

CTPC 125 79.04%

GDPC 25 79.63%

CTDC 39 88.06%

CTDT 39 83.49%

DDE 400 88.47%

TPC 8000 84.66%

KSCTRIAD 343 80.91%

CTDD 195 69.67%

GAAC 5 77.22%

DPC 400 88.0%

Data of Experiment 3. The extracted features is selected by MRMD. For com-
parison, Table 3 shows that the accuracy after dimension reduction with Random
Forest classifier on WEKA. For the purposes of comparison, the dimension infor-
mation is displayed in the Table 3.
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Table 3. The different features accuracy of RF after dimension reduction.

Feature Dimension ACC

AAC 19 90.93%

CKSAAGP 123 78.98%

CKSAAP 1501 88.23%

CTPC 113 79.04%

GDPC 23 79.63%

CTDC 35 87.7%

CTDT 38 83.49%

DDE 44 85.77%

TPC 25 79.74%

KSCTRIAD 343 80.91%

CTDD 136 68.27%

GAAC 4 76.93%

DPC 398 88.29%

3.3 Data of Voting

Lin’s experiment was recurrence. Since the Jackknife took a long time, the exper-
iment switched to 10-fold cross-validation and 92.15% accuracy was achieved.
The data of Experiment 2 and Experiment 3 were used for preliminary predic-
tion on WEKA, and a total of 24 classifiers were utilized. In this process, the
information of accuracy below 80% is deleted. After all the steps are completed,
a matrix of 1702 * 264 was obtained. For the comparison experiment, the data
before and after the feature selection were operated like above.

3.4 Performance of the Algorithm

The voting-based program was developed independently, whose design ideas are
as follows:

(1) BASE
After careful consideration, AAC’s LIBSVM information is used as a bench-
mark. The data source is Lin’s paper, and it is general accepted to use Lin’s
results as a voting benchmark.

(2) Based on the information of BASE, the data that is least relevant to BASE
is selected.

(3) The algorithm can directly calculate the voting composition, and the accu-
racy, confusion matrix, F-score and other indicators.

(4) Repeat steps (2) and (3) to achieve higher voting accuracy with fewer data
as far as possible.
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The data test results of Experiment 1 show that 93.03% is the best result.
Not only is higher accuracy achieved, but less information is utilized. The voting
combination are LIBSVM (c=2, g=2), Random Committee and PART of AAC,
LIBSVM (default parameters) and Logistic of DDE, Simple Logistic of TPC and
Multi-class classifier of CKSAAGP.

Compared with Experiment 1, the data results of Experiment 2 were rel-
atively poor. After comprehensive consideration, 92.8% was regarded as the
best performance. This result integrates information of LIBSVM (c=2, g=2) of
AAC, LIBSVM (c=2, g=2), Näıve Bayes and Logistic of CKSAAP, Multi-class
classifier and Simple Logistic of DPC, Logistic of CKSAAGP. It deserves special
explanation that the cross-validation of all experiments was set to 10-fold.

4 Conclusion

Amino acid classification is a major problem in bioinformatics. Since the devel-
opment of bioinformatics, many theories and algorithms based on amino acid
classification have been proposed. Due to the limitation of generalization ability,
the classification has not reached the ideal accuracy. In this paper, various fac-
tors are considered and a voting algorithm is proposed, whose execution result
is the integration of LIBSVM (c=2, g=2), Random Committee and PART of
AAC, LIBSVM (default parameters) and Logistic of DDE, Simple Logistic of
TPC and Multi-class classifier of CKSAAGP. The final accuracy rate was 93.03.

As a new interdisciplinary technology in the bioinformatics field, thermophilic
proteins play very important role in the study of human health. To systematically
present the experimental results and improve ease of use, a server for predicting
thermophilic proteins has been developed. The user only needs to input protein
sequence, and the highest accuracy of voting and corresponding protein data
can be obtained, automatically. On the other hand, Link prediction paradigms
[40] have been applied in the prediction of disease genes [27], circular RNAs [29],
miRNAs [6,8,21,37], drug side effects [35] and LncRNAs [1,34,36,38]. Also, com-
putational intelligence such as neural networks [2,19], evolutionary algorithms
[26,41] and unsupervised learning [14,28] can be applied to predict health related
thermophilic proteins.
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